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Saddle-splay elasticity and interfacial nematostatics
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This Brief Report drives the generalized force balance equations of interfacial statics between nematic liquid
crystals ~NLC! and isotropic fluids~I!, using the classical equations of liquid crystal physics, taking into
account an important class of gradient surface elasticity, known as saddle-splay elasticity. The objective is to
identify the exact nature of the saddle-splay contributions to the fundamental interfacial force balance equa-
tions, known as the Laplace-Young equation and the Marangoni force equation. General expressions for the
dynamic generalization of these two equations were given by Shih, Mann, and Brown@Mol. Cryst. Liq. Cryst.
98, 47 ~1983!#, but the specific form of the static terms appearing in these two equations were missing in the
literature, and are now given in this paper. It is found that the tensorial order and functional form of the
contributions of saddle-splay elasticity to the two force balance equations are congruent with those arising from
the interfacial tension. Therefore, to generalize the interfacial equations of nematostatics by including saddle-
splay energy, the interfacial tension must be renormalized with the saddle-splay energy contribution. In addi-
tion, saddle splay gives rise to distortion stresses, the two-dimensional analog to the bulk Ericksen stresses,
which contribute to the tangential Marangoni force. Exact expressions for pressure jumps across NLC/I inter-
faces and for the tangential Marangoni force are derived and analyzed. These generalized results are expected
to be useful in the characterization of nematocapillarity phenomena, such as wetting, spreading, and the
mechanics of thin nematic films.
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The fundamental equation of interfacial hydrostatics
interfaces between two isotropic fluids in the absence
gravity and external fields is@2#

2k•~T12T2!5“s•t, ~1!

whereT1/2 are the bulk stress tensors in the~1/2! phases,
k is the unit normal directed into the1 phase,“s5I s•“ is
the surface gradient operator,I s5I2kk is the surface idem
factor, I is the unit tensor,“ is the gradient vector, andt is
the surface stress tensor. For isotropic fluids the surf
stress tensor is simply@2#

t5gI s ~2!

and represents normal~tension! stresses within the surfac
plane. Thus the stress jump at isotropic interfaces is@1#

2k•~T12T2!52Hgk1“sg, ~3!

where H is the mean surface curvature, defined byH5
2“s•k/2. The projection of Eq.~3! alongk gives the pres-
sure jump across the interface, also known as the Lapl
Young equation. The projection of Eq.~3! along the surface
gives the Marangonin force balance arising from the surf
gradient term“sg. Equation~3! fails to describe interface
involving liquid crystals because the surface tension in s
cases is anisotropic, and in addition to surface norm
stresses liquid crystal interfaces generate bending stre
@3#. Theories@4–11# that take into account interfacial tensio
anisotropy have been formulated and used to explain or
dict experimental phenomena. In these theories@4–11# the
interfacial tension is given by

g5g iso1gan~Q,k!, ~4!
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whereg iso is the isotropic interfacial tension,gan is the an-
isotropic contribution known as the anchoring energy,Q rep-
resents the interfacial order parameter, andk is the unit nor-
mal. Thus the surface free energy density~4! takes into
account only homogeneous contributions. To describe m
accurately certain classes of capillary phenomena grad
terms have to be included in Eq.~4!. By now the nature of
gradient contributions to the surface free energy density
well established; see, for example,@4,12–14# and references
therein. One well-established gradient contribution is
saddle-splay surface energy density@15,16# given by

f SG5k•g, ~5a!

g5
L3

2
~Q:“Q2Q•“•Q!, ~5b!

whereL3 is an elastic modulus, andg is the splay-bend sur
face energy vector. Higher order expressions than Eq.~5b!
are given in the literature@13,14,17–20#, but for the objec-
tives of this report the simplified version will suffice. Her
we wish to explore the contributions off SG, g, and“•g to
Eq. ~1!.

The objectives of this Brief Report are~1! to formulate
equations of interfacial nematostatics that take into acco
saddle-splay surface energy contributions, and~2! to identify
the exact nature of these contributions to interfacial press
jumps and to Marangoni tangential forces. Although t
saddle-splay energy contributions have been widely inve
gated in interfacial torque balance equations, a similar an
sis regarding force balance has not been systematically
formed to our knowledge. Theories of nematocapillar
have been formulated@3,21–24#, but none take into accoun
saddle-splay elasticity in a systematic way.
©2001 The American Physical Society01-1
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The system considered here is a static interface betwe
nematic liquid crystal~NLC! and an isotropic fluid~I!. The
interface is assumed to be isothermal, and both phases
incompressible. The NLC occupies regionRN, and the iso-
tropic fluid regionRI . The orientation of the interface be
tween theRN/RI regions, denoted by NLC/I, is characterize
by a unit normalk, directed fromRN into RI . The NLC
structure is given by the symmetric, traceless, 333 tensor
order parameterQ, usually parametrized as follows@25#:

Q5S~nn2I /3!1P~mm2 ll !/3. ~6!

The total free energy of the NLC in the absence of ext
nal fields is given by@3,4,6,7,15,16,26#

F5FH1Fel1Fan1F iso, ~7!

whereFH is the homogeneous,Fel the elastic,Fan the an-
choring, andF iso the isotropic free energy. The homog
neous free energy is responsible for the nematic-isotro
phase transition and is given by

FH5E f H~Q!dV, ~8a!

f H~Q!5 f H~0!1a tr Q22b tr Q31c~ tr Q2!2, ~8b!

wherea,b,care the Landau coefficients. The elastic free e
ergy Fel , also known as the Frank energy, contains lo
range gradient contributions and is given by

Fel5E f gdV, ~9!

where the gradient free energy densityf g is @15,16#

f g~“Q!5
L1

2
tr“Q21

L2

2
~“•Q!•~“•Q!

1
L3

2
~“Q!]~“Q!, ~10!

where$Li%, i 51,2,3, are the Frank elastic constants@15,16#.
Using the identity

~“Q!]~“Q!5~“•Q!•~“•Q!2“•@Q•~“•Q!2Q:“Q#
~11!

and the divergence theorem, the elastic free energyFel be-
comes

Fel5E f BGdV1E f SGdS, ~12a!

f BG~“Q!5
L1

2
tr“Q21

L21L3

2
~“•Q!•~“•Q!,

~12b!

wheref BG is the bulk gradient elastic free energy density a
f SG5k•g is the surface gradient free energy density given
Eq. ~5!. The anchoring energyFan is given by@4#
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Fan5E gandS, ~13a!

gan5b11k•N1b20Q•Q1b21N•N1b22~k•N!2, N5Q•k.
~13b!

gan is the anchoring energy density, and$b i j %, i j
511,20,22,22, are the anchoring coefficients~energy per
area!. Discussion and different uses of Eq.~13b! can be
found in the literature@4–11#. The isotropic free energyF iso
is the surface integral of the usual isotropic interfacial te
sion g iso. The total surface free energyFs and its densityg
are given in terms of the following sum of isotropic, ancho
ing, and gradient contributions:

Fs5E g dS, ~14a!

g~Q,k,“Q!5g iso1gan1 f SG5g iso1gan1k•g,
~14b!

which now depends on“Q as well ask andQ. By decom-
posing the gradient vector as“(* )5kk•“(* )1“s(* ), it is
possible to show that only surface gradients enter in Eq.~14!,
andg5g(Q,k,“sQ).

The specific characteristic nature of the hydrostatics
NLC/I interfaces resides in the constitutive equations forTN,
TI , andts . The total stress tensor in the isotropic phaseTI is
just

T I52pI I , ~15!

wherepI is the hydrostatic pressure. The total stress tenso
the NLC phasetN is given by

TN52pNI1TE, ~16!

wherepN is the pressure andTE is the Ericksen stress@27#
given by

TE52
] f BG

]“Q
:~“Q!T

52L1“Q:~“Q!T2~L21L3!~“Q!T
•~“Q!. ~17!

Following the procedures shown in@23,25#, the pressure in
the NLC phase is given by

pN52~ f BG1 f H!1F, ~18!

whereF is the hydrostatic component of the pressure@23#, is
a function of density and temperature,F(r,T), and is space
independent,“F50.

The surface anchoring energy gives rise to an additio
contribution to the surface stress tensorts of isotropic mate-
rials @3#. For an interface between an isotropic substrate
a NLC, the most general surface elastic stress tensort is a
233 tensor given by the sum of the normal~tension! tn,
bendingtb stresses@3#, and sheartshearstresses. According to
the principle of virtual work, the variation of the surfac
energy due to a displacementu of the interface is given by
1-2
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dFs5E t:~“su!TdS5E I s•t:~“su!TdS, ~19!

where the second equality follows from the fact thatt is a
233 tensor. To derive the expression of the surface st
tensor in terms of the surface free energy densityg, we com-
pute the variation ofFs :

dFs5E F I sg:~“su!T1
]g

]k
•dk1

]g

]“sQ
]d~“sQ!TGdS.

~20!

The variationsdk andd(“sQ)T in terms of the surface dis
placement gradient (“su)T are simply

dk52k•~“su!T, d~“sQ!T52~“sQ!T
•~“su!T,

~21!

which yield

dFs5E I s•F I sg2
]g

]k
k2

]g

]“sQ
:~“sQ!TG :~“su!TdS.

~22!

The factorI s in front of the brackets appears because onl
233 tensor performs work. Thus it follows that the mo
general surface stress tensor for the NLC/I interface is

t5I sg2I s•
]g

]k
k2I s•

]g

]“sQ
:~“sQ!T. ~23!

The surface stress tensor can naturally be decomposed
the following physically significant contributions.

(a) Normal surface stressestn,

tn~Q,k,“sQ!5gI s . ~24!

These are the classical 232 tension stresses arising in a
interfaces. For the NLC/I interface, the tension stresses a
function ofQ, k, and“sQ, in addition to the usual tempera
ture dependence. In particular, surface gradients of the te
order parameter“sQ affect tn.

(b) Bending stressestb,

tb~Q,k,“Q!52I s•S ]g

]k
kD52I s•S ]gan

]k
kD2I s•gk.

~25!

These are nonclassical 233 bending stresses. For the NLC
interface, the bending stresses are a function ofQ, k, and
“Q, in addition to the usual temperature dependence
particular, gradients of the tensor order parameter“Q at the
interface, including surface gradients“sQ and normal gra-
dientskk•“Q at the interface affecttb.

(c) Tension and shear distortion stressestd,

td~Q,k,“sQ!52I s•
]g

]“sQ
:~“sQ!T

52I s•
]~g•k!

]“sQ
:~“sQ!T. ~26!
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These are nonclassical 232 shear and tension stresse
These stresses are the two-dimensional analog of the 333
bulk Ericksen stresses. Sincetd is not traceless, it contain
both shear~i.e., components 12 and 21! and tension compo-
nents~i.e., components 11 and 22!. For the NLC/I interface,
the distortion stresses are a function ofQ, k, and“sQ, in
addition to the usual temperature dependence. In particu
surface gradients of the tensor order parameter“sQ affect
td. To check the validity of the expression for the surfa
stress tensort given in Eq.~23!, assume uniaxiality@set P
50 in Eq. ~6!#, and neglect saddle splay@set g50 and f SG
50 in Eqs.~5!# to obtain

t5I s~g iso1gan!2I sC~n•k!•nk, ~27!

in perfect agreement with the surface stress tensor expres
previously derived by Ericksen@22#, Jenkins and Barrat@24#,
and Virga@23#. HereC is a constant.

Saddle splay is the source of the following contributio
to the normal, bending, and distortion surface stresses:

tSS
n 51~g•k!I s51I sFL3

2
~Q:“sQ2Q“s :Q!•kG ,

~28a!

tSS
b 52I s•gk52I s•FL3

2
~Q:“Q2Q“:Q!kG , ~28b!

tSS
d 52

]g

]“sQ
:~“sQ!T5I s•P,

P52FL3

2
~Qk2Ik •Q!kG :~“sQ!T. ~28c!

The interfacial tangential forcefSSi and normal forcefSS'
generated by the saddle-splay stresses are obtained by c
lating the surface divergence oftSS, and the following re-
sults are obtained:

fSSi5@“s~g•k!#•I s1b•g1“s•Ps , ~29a!

fSS'52~“s•g!k, ~29b!

whereb52“sk is the symmetric surface curvature dyad
andPs5I s•P.

The interfacial tangential saddle-splay forcefSSi is a func-
tion of Q, k, and“Q, and has contributions from tension
bending, and distortion stresses;fSSi is zero if the gradients
of the tensor order parameter at the interface are zero.
interfacial normal saddle-splay forcefSS' is a function ofQ,
k, and“Q, and has contributions from bending;fSSi is zero
if the gradients of the tensor order parameter at the interf
are zero.

Next we derive the complete Laplace-Young equation a
the Marangoni force balance equation for a NLC/I interfa
and characterize the saddle-splay contributions in these
basic equations. The generalized Laplace-Young equa
obtained using Eqs.~15!–~18! and~22b! and taking the pro-
jection of Eq.~1! alongk, is given by
1-3
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pI2F5$2~ f BG1 f H!2kk :TE%

1H 2Hg22HS ]g

]k
•kD1“s•S ]g

]k D J , ~30!

where the first curly bracket represents the bulk contributi
at the interface, and the second the surface contributions
note that gradients of the tensor order parameter contribu
the pressure jumps in the bulk terms as well as in the sur
terms. The contributions from saddle splay are perfectly
corporated in the surface energy density. The net sad
splay contribution to the Laplace-Young equation then is

pI2F5pI2Fusaddle splay502“s•g

5pI2Fusaddle splay502“s•gs12H~g•k!, ~31!

wheregs5I s•g. In the absence of curvature (H50, b50)
the total pressure jumppI2F across a NLC/I interface is

pI2F5$2~ f BG1 f H!2kk :TE%1“s•S ]g

]k D , ~32!

showing that all the nematic energy densitiesf BG, f H , g,
andgAN may contribute to pressure discontinuities acros
flat NLC/I interface. In other words, interfacial pressu
jumps are functions ofQ, k, and“Q.
.
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The tangential projection of Eq.~1! is a balance between
the bulk stress jump and the Marangoni force:

2k•~TI2TN!•I s5F“s~g!1b•
]g

dk
1~“s•Ps!G•I s .

~33!

Thus, in contrast to isotropic interfaces, NLC/I interfac
display the additional curvature dependent Marangoni fo
(b•dg/dk), as well as shear forces (“s•Ps). Saddle splay is
therefore absorbed into the surface energy contribution
the Marangoni force, with congruent tensorial and functio
form. Finally, we conclude that the saddle-splay contrib
tions to tangential forces are

2k•~TI2TN!•I s52k•~TI2TN!•I susaddle splay501“s~g•k!

1b•g1“s•Ps , ~34!

which persists even for planar interfaces.
In summary, the analysis identifies the exact nature of

contributions of saddle-splay energy to the interfacial str
balance equations between nematic liquid crystals and
tropic fluids. The tensorial order and functional form of th
saddle-splay contributions to the Laplace-Young equat
and to the Marangoni force are congruent with the bulk g
dient elasticity and anchoring energy terms. These findi
will be needed to understand and evaluate liquid crystal
terfacial phenomena.
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