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Saddle-splay elasticity and interfacial nematostatics
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This Brief Report drives the generalized force balance equations of interfacial statics between nematic liquid
crystals(NLC) and isotropic fluids(l), using the classical equations of liquid crystal physics, taking into
account an important class of gradient surface elasticity, known as saddle-splay elasticity. The objective is to
identify the exact nature of the saddle-splay contributions to the fundamental interfacial force balance equa-
tions, known as the Laplace-Young equation and the Marangoni force equation. General expressions for the
dynamic generalization of these two equations were given by Shih, Mann, and BvninCryst. Lig. Cryst.

98, 47 (1983, but the specific form of the static terms appearing in these two equations were missing in the
literature, and are now given in this paper. It is found that the tensorial order and functional form of the
contributions of saddle-splay elasticity to the two force balance equations are congruent with those arising from
the interfacial tension. Therefore, to generalize the interfacial equations of nematostatics by including saddle-
splay energy, the interfacial tension must be renormalized with the saddle-splay energy contribution. In addi-
tion, saddle splay gives rise to distortion stresses, the two-dimensional analog to the bulk Ericksen stresses,
which contribute to the tangential Marangoni force. Exact expressions for pressure jumps across NLC/I inter-
faces and for the tangential Marangoni force are derived and analyzed. These generalized results are expected
to be useful in the characterization of nematocapillarity phenomena, such as wetting, spreading, and the
mechanics of thin nematic films.
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The fundamental equation of interfacial hydrostatics forwhere viq, is the isotropic interfacial tensiony,, is the an-
interfaces between two isotropic fluids in the absence ofsotropic contribution known as the anchoring eneQyep-

gravity and external fields i2] resents the interfacial order parameter, &nd the unit nor-
Lo mal. Thus the surface free energy dendity takes into
—k-(TT=T7)=Vst, (1) account only homogeneous contributions. To describe more

_ ) accurately certain classes of capillary phenomena gradient
whereT "/~ are the bulk stress tensors in the/—) phases, terms have to be included in E¢d). By now the nature of
k'is the unit normal directed into the phase,Vs=1s-V is  gradient contributions to the surface free energy density is
the surface gradient operatdg=1—kk is the surface idem g established; see, for examplé,12—14 and references
factor, | is the unit tensorV is the gradient vector, antdis  therein. One well-established gradient contribution is the

the surface stress tensor. For isotropic fluids the surfacgaqgle-splay surface energy dengit$, 16 given by
stress tensor is simpl2]

fsg=k-g, 5
t=yl @) SG g (53
and represents normaﬂt_ansior) stresses vyithin the surface g= %(Q:VQ—Q-VQ), (5b)
plane. Thus the stress jump at isotropic interfacdd js
—k-(T*=T7)=2Hyk+Vgy, (3)  WhereLgs is an elastic modulus, arglis the splay-bend sur-

face energy vector. Higher order expressions than (&l).
where H is the mean surface curvature, defined Hy- are given in the literaturgl3,14,17-2Q but for the objec-
—V.-k/2. The projection of Eq(3) alongk gives the pres- tives of this report the simplified version will suffice. Here
sure jump across the interface, also known as the Laplacave wish to explore the contributions 6§, g, andV-gto
Young equation. The projection of E(B) along the surface EQ. (1).
gives the Marangonin force balance arising from the surface The objectives of this Brief Report afd) to formulate
gradient termV.y. Equation(3) fails to describe interfaces equations of interfacial nematostatics that take into account
involving liquid crystals because the surface tension in sucisaddle-splay surface energy contributions, &)do identify
cases is anisotropic, and in addition to surface normathe exact nature of these contributions to interfacial pressure
stresses liquid crystal interfaces generate bending stressigénps and to Marangoni tangential forces. Although the
[3]. Theoried4—11] that take into account interfacial tension saddle-splay energy contributions have been widely investi-
anisotropy have been formulated and used to explain or pregated in interfacial torque balance equations, a similar analy-
dict experimental phenomena. In these theofies11] the  sis regarding force balance has not been systematically per-

interfacial tension is given by formed to our knowledge. Theories of nematocapillarity
have been formulatel8,21-24, but none take into account
Y= YisoT Yarl Q. K), (4) saddle-splay elasticity in a systematic way.
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The system considered here is a static interface between a

nematic liquid crystalNLC) and an isotropic fluidl). The
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interface is assumed to be isothermal, and both phases are

incompressible. The NLC occupies regi®Y, and the iso-
tropic fluid regionR'. The orientation of the interface be-
tween theR"/R' regions, denoted by NLC/I, is characterized

by a unit normalk, directed fromRN into R'. The NLC
structure is given by the symmetric, traceles 3 tensor
order paramete®, usually parametrized as folloW&5]:

Q=S(nn—1/3)+P(mm-—11)/3. (6)

Fa= f '}’andsx (1339
Yan= B1iK- N+ B20Q- Q+ BxN- N+ Bo(k-N)?,  N=Q-k.
(13b)

Yan 1S the anchoring energy density, anfig;;}, ij
=11,20,22,22, are the anchoring coefficielienergy per
area. Discussion and different uses of E(@L3b) can be
found in the literaturg¢4—11]. The isotropic free energyi,

is the surface integral of the usual isotropic interfacial ten-
sion y,sc. The total surface free enerdy, and its densityy

The total free energy of the NLC in the absence of exterye given in terms of the following sum of isotropic, anchor-

nal fields is given by3,4,6,7,15,16,2p
F=Fu+Fet+FartFisos (7)

where Fy is the homogeneous;, the elastic,F,, the an-

choring, andF;s, the isotropic free energy. The homoge-
neous free energy is responsible for the nematic-isotropic

phase transition and is given by

FH:j fu(Q)dV, (8a)

fu(Q)=fy(0)+atrQ?—btrQ3+c(trQ??, (8h)

wherea,b,care the Landau coefficients. The elastic free en-
ergy F;, also known as the Frank energy, contains lon

range gradient contributions and is given by

Fo— f f4dV, 9)

where the gradient free energy densiityis [15,16]
L, , Lo
fo(VQ) = StV Q% (V- Q)-(V-Q)

Ls .
+ 5 (VQH(VQ), (10

where{L;}, i=1,2,3, are the Frank elastic consta[i§,14.
Using the identity

(VQ)f(VQ)=(V'Q)~(V~Q)—V'[Q'(V'Q)—QZV8]1)

and the divergence theorem, the elastic free enéigype-
comes

Fa [ focdv+ [ focis (12a

Ly, Ly+Ls
fea(VQ)= S V™ ——(V-Q)-(V-Q),
(120

g9

ing, and gradient contributions:

Fs:f yds, (149

Y(Q.K,VQ)=%isot YanT fsc= Visot Yant K- 0,
(14b)

which now depends oN Q as well ask andQ. By decom-
posing the gradient vector &(*)=kk -V (*)+V(*), itis
possible to show that only surface gradients enter in(E4),
and y=y(Q,k,VQ).

The specific characteristic nature of the hydrostatics of
NLC/I interfaces resides in the constitutive equationsTiyy
T', andts. The total stress tensor in the isotropic ph@isés
just

T'=-pl, (15)
wherep' is the hydrostatic pressure. The total stress tensor in
the NLC phase is given by
TN=—p"+TF, (16)

wherepN is the pressure andif is the Ericksen streg®7]
given by

CIVQ’
=—LVQ:I(VQ) = (L +L3)(VQ)T-(VQ). (17)

Following the procedures shown j23,25, the pressure in
the NLC phase is given by

TE= (VQT©

pN=—(fggt+ )+, (18)
where® is the hydrostatic component of the presq2@, is
a function of density and temperatue(p,T), and is space
independentV ® =0.

The surface anchoring energy gives rise to an additional
contribution to the surface stress tentpof isotropic mate-
rials [3]. For an interface between an isotropic substrate and
a NLC, the most general surface elastic stress tehéora
2% 3 tensor given by the sum of the norm@énsion t",

wherefgg is the bulk gradient elastic free energy density andbendingt® stresse$3], and sheats"*®'stresses. According to
fsg=k-gis the surface gradient free energy density given inthe principle of virtual work, the variation of the surface

Eq. (5). The anchoring energl ., is given by[4]

energy due to a displacemenbf the interface is given by
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These are nonclassicalx2 shear and tension stresses.
5Fs:J ti(VsU)TdSZJ ls-t:(Vsu)'dS, (19 These stresses are the two-dimensional analog of tha 3
bulk Ericksen stresses. Sint® is not traceless, it contain
where the second equality follows from the fact thas a  both sheafi.e., components 12 and Rand tension compo-
2X 3 tensor. To derive the expression of the surface stressents(i.e., components 11 and RZor the NLC/I interface,
tensor in terms of the surface free energy dengitwe com-  the distortion stresses are a function@f k, andV,Q, in
pute the variation of: addition to the usual temperature dependence. In particular,
surface gradients of the tensor order param&gp affect
OF = f

dy dy d idi i
Y (VaT+ 2 - Skt L S(V.Q)T t%. To check the validity of the expression for the surface
The variationssk and 8(V<Q) " in terms of the surface dis-

IVQ"

stress tensot given in Eq.(23), assume uniaxialityset P
(200 =0 in Eq.(6)], and neglect saddle splagetg=0 and fgg
=0 in Egs.(5)] to obtain

placement gradient{.u) " are simply t=1<(YVisot ¥an) — 1sC(N-Kk) - nk, (27)
=—k(Va)T, 8VQT==(V.QT(Vou)T, in perfect agreement with the surface stress tensor expression
(21) previously derived by Ericksd22], Jenkins and Barrg4],
which yield and Virga[23]. HereC is a constant.

Saddle splay is the source of the following contributions

to the normal, bending, and distortion surface stresses:

Jd
5|:S:f |S.[|Sy— azk O Q (VQT|(Vau)'TdS.

(22) tas=+(g-K)lg=+I

L3
s 5 (QVsQ-QVs:Q)- k}
The factorl in front of the brackets appears because only a (283
2X 3 tensor performs work. Thus it follows that the most
eneral surface stress tensor for the NLC/I interface is Ls
’ t§s=—|s~9k=—|s~{7(Q:VQ—QVIQ)k}, (28
dy
t=lgy—ls ——k—ls (VSQ) (23
ak IV Q Q d (V.=
. sSs— (9V Q s
The surface stress tensor can naturally be decomposed into
the following physically significant contributions.
(a) Normal surface stresse$, = —

t"(Q.k,VsQ)=vls. (24) , _ _
The interfacial tangential forcésg and normal forcefgg
These are the classicalx2 tension stresses arising in all generated by the saddle-splay stresses are obtained by calcu-
interfaces. For the NLC/I interface, the tension stresses arelating the surface divergence 6fs, and the following re-
function of Q, k, andV ¢ Q, in addition to the usual tempera- sults are obtained:
ture dependence. In particular, surface gradients of the tensor
order parameteV .Q affectt". fsg=[Vs(g-k)]-Is+b-g+ V- Ilg, (293
(b) Bending stresse,

(VQT. (280

Ls
- (Qk—=1k-Q)k

fss == (Vs 0k, (29b)

J
t°(Q,k,VQ)=—Is (a—zk) =-—lg (%k) —ls-gk. whereb= —V k is the symmetric surface curvature dyadic,
(25) and =111
The interfacial tangential saddle-splay foffgg, is a func-
These are nonclassicakZ bending stresses. For the NLC/I tion of Q, k, andVQ, and has contributions from tension,
interface, the bending stresses are a functiopk, and  bending, and distortion strességg is zero if the gradients
VQ, in addition to the usual temperature dependence. If the tensor order parameter at the interface are zero. The
particular, gradients of the tensor order param®€r at the interfacial normal saddle-splay foréeg is a function ofQ,
interface, including surface gradien%,Q and normal gra- k, andVQ, and has contributions from bendinigg is zero
dientskk - VQ at the interface affedf. if the gradients of the tensor order parameter at the interface
(c) Tension and shear distortion stresgés are zero.
Next we derive the complete Laplace-Young equation and
(V.O)T the Marangoni force balance equation for a NLC/I interface,
ls: av,Q s and characterize the saddle-splay contributions in these two
basic equations. The generalized Laplace-Young equation,
obtained using Eqg15)—(18) and(22hb) and taking the pro-
jection of Eqg.(1) alongk, is given by

th(Qk,VQ)=

(VT (26)
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p'—(b:{—(fBG+fH)—kk;TE} The tangential projection of Edq1) is a balance between
the bulk stress jump and the Marangoni force:

dy

L.k

* K

dy
2Hy—2 s
-l oo va (] oo (T | W b G (Tt 1,

(33
where the first curly bracket represents the bulk contributions . . . .
at the interface, and the second the surface contributions. W. ”T' |nhcon(tjr§§t tOI'SOtrOp'C |ndterfac§s, NIMC/ I mterfe;ces
note that gradients of the tensor order parameter contribute spiay the additional curvature dependent Marangoni force

the pressure jumps in the bulk terms as well as in the surfact é;?% ?g)ét?sso\pgldaﬁ]f:?ﬁ; fgLCr?j:g gri)érg;c(j:%lr?trsig{?t?/olr?s o
terms. The contributions from saddle sp!ay are perfectly In"[[1e Marangoni force, with congruent tensorial and functional
Yorm. Finally, we conclude that the saddle-splay contribu-

tions to tangential forces are
—k- (TI _TN) ! Is: —k- (TI _TN) : |s|saddle splayo"_vs(g' k)
+b-g+ Vg I, (34)

splay contribution to the Laplace-Young equation then is

pl_q): pI _q)|saddle splaytO_Vs'g

=p'- D sagae splay 0~ Vs OsT2H(g-k), (31)
which persists even for planar interfaces.

In summary, the analysis identifies the exact nature of the
wheregs=1Is-g. In the absence of curvaturéi=0, b=0)  contributions of saddle-splay energy to the interfacial stress
the total pressure jump'—® across a NLC/I interface i halance equations between nematic liquid crystals and iso-

tropic fluids. The tensorial order and functional form of the
dy saddle-splay contribl_Jtions to the Laplace—\_(oung equation
p'—®={—(fgg+fy) —kk:TE}+ V. (_> (32)  and to the Marangoni force are congruent with the bulk gra-
ak dient elasticity and anchoring energy terms. These findings
will be needed to understand and evaluate liquid crystal in-

showing that all the nematic energy densitieg;, fy, 0, terfacial phenomena.
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